

European Technical Assessment

ETA 22/0803 of 25/11/2022

English translation prepared by IETcc. Original version in Spanish language

General Part

Manufacturer:

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:

Trade name of the construction product: Product family to which the construction product belongs: Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

BTP, BTP-G, BTP-X, BTP-A4

Torque controlled expansion anchor made of galvanized steel, sherardized steel or stainless steel of sizes M8, M10, M12, M16, M20 and M24 for use in cracked or uncracked concrete.

Ningbo Bigood Metal Technology Co. Ltd. No 19, Eastern section of Hongtang South Road Ningbo. China. website: www.nbbigood.com

Manufacturing plants:

This European Technical Assessment contains:

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of: Ningbo Bigood Metal Technology plant 1.

18 pages including 3 annexes which form an integral part of this assessment.

European Technical Assessment EAD 330232-01-0601 "Mechanical fasteners for use in concrete", ed. December 2019

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

Page 3 of European Technical Assessment ETA 22/0803 of 25/11/2022

English translation prepared by IETcc

SPECIFIC PART

1. Technical description of the product

The Ninbgo Bigood BTP wedge anchor in the range of M8, M10, M12, M16, M20 and M24 is an anchor made of galvanised steel. The Ningbo Bigood BTP-G wedge anchor in the range of M8, M10, M12, M16 and M20 is an anchor made of sherardized steel. The Ningbo Bigood BTP-X wedge anchor in the range of M8, M10, M12, M16 and M20 is an anchor made of galvanized steel. The Ningbo Bigood BTP-A4 wedge anchor in the range of M8, M10, M12, M16 and M20 is an anchor made of stainless steel. The anchor is installed into a predrilled cylindrical hole and anchored by torque-controlled expansion. The anchorage is characterized by friction between expansion clip and concrete.

Product and installation descriptions are given in annexes A1 and A2.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and	See Annex C1, C3 and C4
quasi-static loading) Method A	
Characteristic resistance to shear load (static and quasi-static loading).	See Annex C1 and C5
Displacements	See Annex C6
Characteristic resistance and displacements for seismic performance category C1 and C2	See Annex C7 and C8

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for class A1
Resistance to fire	See annexes C9 and C10

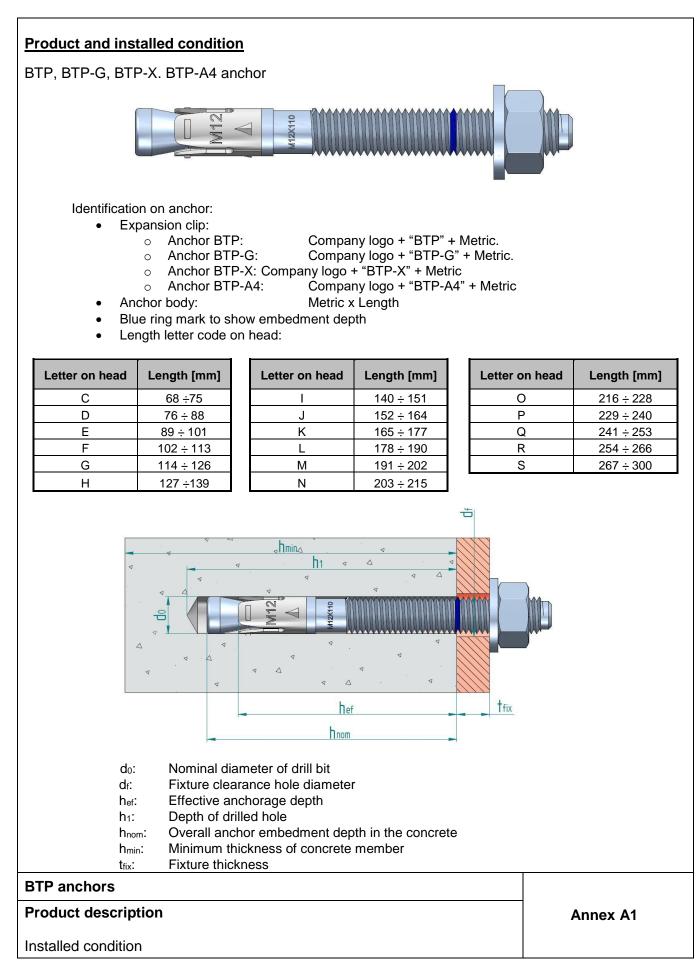
4. Assessment and Verification of Constancy of Performances (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V to Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.



Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 <u>https://dit.ietcc.csic.es</u>

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 25th of November 2022

Table A1: materials

Item	Designation	Material for BTP	Material for BTP-G
1	Anchor body	M8 to M20: carbon steel wire rod, galvanized ≥ 5 μm ISO 4042 Zn5/An/T0 with antifriction coating M24: machine carbon steel, galvanized ≥ 5 μm ISO 4042 Zn5/An/T0 with antifriction coating	Carbon steel wire rod, sherardized ≥ 40 µm EN 13811
2	Washer	DIN 125, DIN 9021, DIN 440 galvanized ≥ 5 µm ISO 4042 Zn5/An/T0	DIN 125, DIN 9021, DIN 440 sherardized ≥ 40 µm EN 13811
3	Nut	DIN 934 class 6, galvanized ≥ 5 µm ISO 4042 Zn5/An/T0	DIN 934 class 6, sherardized ≥ 40 µm EN 13811
4	Expansion clip	Stainless steel	Stainless steel

Item	Designation Material for BTP-X		Material for BTP-A4
1	Anchor body	Carbon steel wire rod, galvanized ≥ 5 µm ISO 4042 Zn5/An/T0 with antifriction coating	Stainless steel, grade A4
2	Washer	DIN 125, DIN 9021, DIN 440 galvanized ≥ 5 µm ISO 4042 Zn5/An/T0	DIN 125, DIN 9021, DIN 440 stainless steel, grade A4
3	Nut	DIN 934 class 6 galvanized ≥ 5 µm ISO 4042 Zn5/An/T0	Stainless steel, grade A4 with antifriction coating
4	Expansion clip	Carbon steel strip, sherardized ≥ 15 µm EN 13811	Stainless steel, grade A4, galvanized ≥ 5 µm ISO 4042 Zn5/An/T0

BTP anchors Annex A2 Product description Annex A2

Specifications of intended use

Version	Intended use	M8	M10	M12	M16	M20	M24
	Static or quasi static loads	✓	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
BTP	Seismic loads category C1		✓	✓	✓		
DIP	Seismic loads category C2			✓	✓		
	Resistance to fire exposure	~	✓	✓	✓	✓	✓
	Static or quasi static loads	✓	✓	✓	✓	✓	
BTP-G	Seismic loads category C1	✓	✓	✓	✓	✓	
	Seismic loads category C2			✓	✓	✓	
	Resistance to fire exposure	✓	✓	✓	✓	✓	
	Static or quasi static loads	✓	✓	✓	✓	✓	
	Seismic loads category C1	~	✓	✓	✓	✓	
BTP-X	Seismic loads category C2		✓	√		✓	
	Resistance to fire exposure	✓	✓	✓	✓	√	

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016
- Cracked or uncracked concrete

Use conditions (environmental conditions):

- BTP, BTP-X: anchorages subjected to dry internal conditions.
- BTP-G:
 - Anchorages in cracked concrete: dry internal conditions
 - Anchorages in uncracked concrete: durability depending on the following environmental corrosivity categories according to ISO 9223:2012:

Corrosivity category	Corrosivity	Durability [years]
C1	Very low	50 ¹⁾
C2	Low	50 ¹⁾
C3	Medium	19
C4	High	9.5
C5	Very high	4.7
СХ	Extreme	

1) Working life of fastener limited to 50 years according to EAD 330232-01-0601 section 1.2.2

 BTP-A4: anchorages subjected to dry internal conditions, to external atmospheric exposure (including industrial and marine environment) or to permanent internal damp conditions if no particular aggressive conditions exist. Such particular aggressive conditions are e.g., permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g., in desulphurization plants or road tunnels where de-icing materials are used). Atmospheres under Corrosion Resistance Class CRC III according to EN 1993-1-4:2006+A1:2015 annex A.

BTP anchors	
Intended use	Annex B1
Specifications	

Corrosivity	Corrosivity	Typical envi	ronments – Examples
category		Indoor	Outdoor
C1	Very low	Heated spaces with low relative humidity and insignificant pollution; e.g., offices, schools, museums.	Dry or cold zone, atmospheric environment with very low pollution and time of wetness; e.g., certain desserts, Central Artic/Antarctic.
C2	Low	Unheated spaces with varying temperature and relative humidity. Low frequency of condensation and low pollution; e.g., storage, sport halls.	Temperate zone, atmospheric environment with low pollution (SO ₂ < 5 μ g/m ³); e.g., rural areas, small towns. Dry or cold zone, atmospheric environment with short time or wetness, e.g., deserts, subarctic areas.
C3	Medium	Spaces with moderate frequency of condensation and moderate pollution from production process; e.g., food-processing plants, laundries, breweries, dairies.	Temperate zone, atmospheric environment with medium pollution (SO ₂ 5 μ g/m ³ to 30 μ g/m ³), or some effect of chlorides, e.g., urban areas, coastal areas with low deposition of chlorides. Subtropical and tropical zone, atmosphere with low pollution.
C4	High	Spaces with high frequency of condensation and high pollution from production process; e.g., industrial processing plants.	Temperate zone, atmospheric environment with high pollution (SO ₂ 30 μ g/m ³ to 90 μ g/m ³), or substantial effect of chlorides; e.g., polluted urban areas, industrial areas, coastal areas without spray of salt water or exposure to strong effect of de-icing salts. Subtropical and tropical zone, atmosphere with medium pollution.
C5	Very High	Spaces with very high frequency of condensation and/or high pollution from production process; e.g., mines, caverns for industrial purposes, unventilated sheds in subtropical and tropical zones	Temperate zone, atmospheric environment with very high pollution (SO ₂ 90 μ g/m ³ to 250 μ g/m ³), or significant effect of chlorides; e.g., industrial areas, coastal areas, sheltered positions on coastline. Subtropical and tropical zone, atmosphere with medium pollution.
СХ	Extreme	Spaces with almost permanent condensation or extensive periods of exposure to extreme humidity effects and/or high pollution from production process; e.g., unventilated sheds inhumid tropical zones with penetration of outdoor pollution including airborne chlorides and corrosion- stimulating particulate matter	Subtropical and tropical zone (very high time of wetness), atmospheric environment with very high SO ₂ pollution (higher than 250 μ g/m ³) including accompanying and production factors and/or strong effect of chlorides; e.g., extreme industrial areas, coastal and offshore areas, occasional contact with salt spray.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with EN 1994-4:2018
- Anchorages under seismic actions are designed in accordance with EN 1992-4:2018. Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure. Fastening in stand-off installation or with grout layer are not allowed.
- Anchorages under fire exposure are designed in accordance with EN 1992-4:2018. It must be ensured that local spalling of the concrete cover does not occur.

Installation:

- Hole drilling by rotary plus hammer mode.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.

BTP anchors

Intended use

Specifications

Annex B2

Table C1: Installation parameters for BTP, BTP-G, BTP-X anchors

			Performances						
Instal	llation parameters		M8	M10	M12	M16	M20	M24	
d ₀	Nominal diameter of drill bit:	[mm]	8	10	12	16	20	24	
df	Fixture clearance hole diameter:	[mm]	9	12	14	18	22	26	
Tinst	Nominal installation torque:	[Nm]	20 / 15 ¹⁾	40	60	100	200	250	
L_{min}	Minimum total length of the bolt:	[mm]	68	82	98	119	140	175	
h _{min}	Minimum thickness of concrete member:	[mm]	100	120	140	170	200	250	
h₁	Depth of drilled hole:	[mm]	60	75	85	105	125	155	
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	55	68	80	97	114	143	
h _{ef}	Effective anchorage depth:	[mm]	48	60	70	85	100	125	
t _{fix}	Thickness of fixture for washer DIN 125 \leq ²⁾	[mm]	L - 66	L – 80	L – 96	L - 117	L - 138	L - 170	
t _{fix}	Thickness of fixture for washers DIN 9021, DIN 440 ≤ ₂)	[mm]	L - 67	L – 81	L – 97	L - 118	L - 139	L - 171	
0	Minimum allowable spacing:	[mm]	40	40	60	65	95	125	
Smin	for edge distance c ≥	[mm]	55	70	75	95	105	125	
A .	Minimum allowable distance:	[mm]	45	45	55	70	95	125	
Cmin	for spacing s ≥	[mm]	55	90	110	115	105	125	

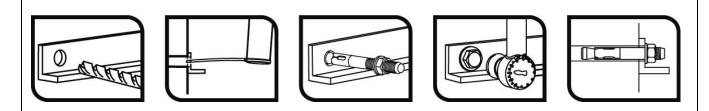
¹⁾ Respective values for anchors BTP / BTP-G, BTP-X

²⁾ L = total anchor length

Table C2: Installation parameters for BTP-A4 anchor

Installation parameters			Performances						
instan	ation parameters	M8	M10	M12	M16	M20			
d ₀	Nominal diameter of drill bit:	[mm]	8	10	12	16	20		
df	Fixture clearance hole diameter:	[mm]	9	12	14	18	22		
Tinst	Nominal installation torque:	[Nm]	15	30	60	100	200		
L _{min}	Minimum total length of the bolt:	[mm]	68	82	98	119	140		
h _{min}	Minimum thickness of concrete member:	[mm]	100	120	140	170	200		
h1	Depth of drilled hole:	[mm]	60	75	85	105	125		
h _{nom}	Overall anchor embedment depth in the concrete:	[mm]	55	68	80	97	114		
h _{ef}	Effective anchorage depth:	[mm]	48	60	70	85	100		
t _{fix}	Thickness of fixture for washer DIN $125 \leq 1^{1}$	[mm]	L - 66	L – 80	L – 96	L - 117	L – 138		
t _{fix}	Thickness of fixture for washers DIN 9021, DIN 440 \leq ¹⁾	[mm]	L - 67	L – 81	L – 97	L - 118	L – 139		
Smin	Minimum allowable spacing:	[mm]	42	47	57	75	100		
Cmin	Minimum allowable distance:	[mm]	47	52	62	75	90		

¹⁾ L = total anchor length


BTP anchors

Performances

Annex C1

Installation parameters

Installation process

BTP anchors

Performances

Installation procedure

Annex C2

Table C3: Essential characteristics under static or quasi-static tension loads according to design method A according to EN 1992-4 for BTP, BTP-G, BTP-X anchors

	al characteristics und					Perfo	ormances		
static te method	ension loads accordin	ig to design		M8	M10	M12	M16	M20	M24
	n loads: steel failure								
N _{Rk.s}	Characteristic resistance	:	[kN]	18.1	31.4	40.4	72.7	116.6	179.2
γMs	Partial safety factor: 1)		[-]	1.5	1.5	1.5	1.5	1.5	1.5
	n loads: pull-out failur	e in concre	te				1		
BTP anc									
N _{Rk,p,ucr}	Characteristic resistanc uncracked concrete:	e in C20/25	[kN]	9	18	20	36	48	55
N _{Rk,p,cr}	Characteristic resistanc cracked concrete:	e in C20/25	[kN]	5	9.5	12	25	32	35
BTP-G ai	nchor						•		
N Rk,p,ucr	Characteristic resistanc uncracked concrete:	e in C20/25	[kN]	10	18	1)	36	1)	
N _{Rk,p,cr}	Characteristic resistance in C20/25 cracked concrete:		[kN]	6	10	16	1)	30	
BTP-X ar	nchor					•			
N _{Rk,p,ucr}	Characteristic resistanc uncracked concrete:	e in C20/25	[kN]	10	18	28	34	1)	
N _{Rk,p,cr}	Characteristic resistance in C20/25 cracked concrete:		[kN]	7	11	15	1)	1)	
γins	Installation safety factor		[-]	1.2	1.0	1.0	1.0	1.0	1.2
	la execcia a fector fer	C30/37	[-]	1.22	1.17	1.22	1.22	1.17	1.22
ψc	Increasing factor for N ⁰ Rk,p:	C40/50	[-]	1.41	1.31	1.41	1.41	1.31	1.41
	IN Rk,p.	C50/60	[-]	1.58	1.43	1.58	1.58	1.43	1.58
Tension	n loads: concrete con	e and splitti	ing failur	e					
h _{ef}	Effective embedment de	pth:	[mm]	48	60	70	85	100	125
kucr,N	Factor for uncracked cor	ncrete:	[-]				11.0		
k _{cr.N}	Factor for cracked concr	ete:	[-]				7,7		
γins	Installation safety factor:		[-]	1.2	1.0	1.0	1.0	1.0	1.2
Scr,N	Concrete cone failure:		[mm]			3	3 x h _{ef}		
Ccr,N			[mm]			1	.5 x h _{ef}		
Scr,sp	Splitting failure:		[mm]	288	300	350	425/510 ²⁾	500/600 ²⁾	56
	Splitting failure:		[mm]	144	150	175	213/255 ²⁾	250/300 ²⁾	28

BTP anchors	
Performances	Annex C3
Essential characteristics under static or quasi-static tension loads	

Table C4: Essential characteristics under static or quasi-static tension loads according to design method A according to EN 1992-4 for BTP-A4 anchor

Essentia	al characteristics unde	er static or qu	asi-		F	Performan	ces	
static te	nsion loads according	to design m	ethod A	M8	M10	M12	M16	M20
Tension	loads: steel failure				•			•
N _{Rk,s}	Characteristic resistance		[kN]	18.5	30.9	45.5	71.5	122.5
γMs	Partial safety factor:		[-]	1.4	1.4	1.4	1.4	1.4
Tension	loads: pull-out failure	in concrete						
N _{Rk,p,ucr}	Characteristic resistance uncracked concrete:	e in C20/25	[kN]	12	16	22	1)	1)
	la sus sin a fa stan fan	C30/37	[-]	1.22	1.22	1.22	1.22	1.09
ψ_c	Increasing factor for N ⁰ Rk,p:	C40/50	[-]	1.41	1.41	1.41	1.41	1.16
	Г¶ Кк,р∙	C50/60	[-]	1.58	1.58	1.58	1.58	1.22
N _{Rk,p,cr}	Characteristic resistance cracked concrete:	e in C20/25	[kN]	8.5	14	19	1)	1)
	la croccia a fa ctor for	C30/37	[-]	1.01	1.00	1.09	1.09	1.17
ψc	Increasing factor for N ⁰ Rk,p:	C40/50	[-]	1.02	1.00	1.15	1.16	1.32
•	IN°Rk,p.	C50/60	[-]	1.02	1.00	1.20	1.22	1.44
γins	Installation safety factor		[-]	1.0	1.0	1.2	1.2	1.2
Tension	loads: concrete cone	and splitting	failure					
h _{ef}	Effective embedment de	oth:	[mm]	48	60	70	85	100
kucr,N	Factor for uncracked con	crete:	[-]			11.0		
k _{cr.N}	Factor for cracked concre	ete:	[-]			7,7		
γins	Installation safety factor:		[-]	1.0	1.0	1.2	1.2	1.2
Scr,N	Concrete cone failure:		[mm]			3 x h _{ef}		
Ccr,N			[mm]			1.5 x h _{ef}		
Scr,sp	Splitting failure:		[mm]	164	204	238	290	380
C _{cr,sp}	Splitting failure:		[mm]	82	102	119	145	190

1) Pull out failure is not decisive

BTP anchors

Performances

Annex C4

Essential characteristics under static or quasi-static tension loads

Table C5: Essential characteristics under static or quasi-static shear loads of design method A according to EN 1992-4 for BTP, BTP-G, BTP-X anchors

	tial characteristics under st			-	Perforn	nances	-	
•	static shear loads according n method A	g to	M8	M10	M12	M16	M20	M24
Shear	loads: steel failure without	lever arm	•	•	•		•	
V _{Rk,s}	Characteristic resistance:	[kN]	11.0	17.4	25.3	47.1	73.1	84.7
k 7	Ductility factor:	[-]			1.(00		
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	1.25
Shear	loads: steel failure with leve	er arm						
M ⁰ Rk,s	Characteristic bending moment:	[Nm]	22.5	44.8	78.6	199.8	389.4	673.5
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	1.25
Shear	loads: concrete pryout failu	ire						
k ₈	Pryout factor:	[-]	1	2	2	2	2	2
γins	Installation safety factor:	[-]			1.(00		
Shear	loads: concrete edge failure	•						
lf	Effective length of anchor under shear loads:	[mm]	48	60	70	85	100	125
d _{nom}	Outside anchor diameter:	[mm]	8	10	12	16	20	24
γins	Installation safety factor:	[-]			1.(00		

Table C6 Essential characteristics under static or quasi-static shear loads of design method A according to EN 1992-4 for BTP-A4 anchor

	ial characteristics under static o			F	Performanc	es	
static s A	hear loads according to design	method	M8	M10	M12	M16	M20
Shear I	oads: steel failure without lever	arm					
V _{Rk,s}	Characteristic resistance:	[kN]	11.9	18.9	27.4	55.0	85.9
k ₇	Ductility factor:	[-]			1.00		
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25
Shear I	oads: steel failure with lever arn	n					
M ⁰ Rk,s	Characteristic bending moment:	[Nm]	26.2	52.3	91.7	233.1	454.3
γMs	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25
Shear I	oads: concrete pryout failure						
k ₈	Pryout factor:	[-]	1	2	2	2	2
γins	Installation safety factor:	[-]			1.00	•	•
Shear I	oads: concrete edge failure						
lf	Effective length of anchor under shear loads:	[mm]	48	60	70	85	100
dnom	Outside anchor diameter:	[mm]	8	10	12	16	20
γins	Installation safety factor:	[-]			1.00	•	•

BTP anchors	
Performances	Annex C5

Essential characteristics under static or quasi-static shear loads

D'					Perform	nances		
Displa	acements under tension loads		M8	M10	M12	M16	M20	M24
BTP a	nchor							
Ν	Service tension load:	[kN]	2.5	4.3	6.3	10.4	13.9	18.0
δ _{N0}	Short term displacement:	[mm]	1.1	0.7	1.0	0.4	1.6	0.4
δ _{N∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9	2.0
	anchor				T	T		
Ν	Service tension load:	[kN]	2.5	4.3	6.3	10.4	13.9	
δ _{N0}	Short term displacement:	[mm]	1.0	1.1	0.9	1.5	1.2	
δ _{N∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9	
	(anchor				T	T		
Ν	Service tension load:	[kN]	2.5	4.3	7.6	11.9	14.3	
δ _{N0}	Short term displacement:	[mm]	1.0	1.1	0.9	1.5	1.3	
δ _{N∞}	Long term displacement:	[mm]	1.6	1.6	1.6	1.6	1.6	
BTP-A	A4 anchor							
N	Service tension load in non cracked concrete:	[kN]	5.7	7.6	8.7	15.3	19.5	
δ_{N0}	Short term displacement:	[mm]	1.4	1.4	1.4	1.8	1.8	
δ _{N∞}	Long term displacement:	[mm]	1.9	1.9	1.9	1.9	1.9	
BTP-A	A4 anchor							
N	Service tension load in cracked cocnrete:	[kN]	4.0	6.7	7.5	10.7	13.7	
δ _{N0}	Short term displacement:	[mm]	1.2	1.3	1.3	1.3	1.3	
δ _{N∞}	Long term displacement:	[mm]	1.7	1.7	1.7	1.7	1.7	

Table C8: Displacements under shear load for BTP, BTP-G, BTP-X, BTP-A4 anchors

Diani					Perforn	nances		
Dispi	acements under shear loads	Ī	M8	M10	M12	M16	M20	M24
BTP a	inchor			•			•	•
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6	33.6
δ _{V0}	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1	1.4
δv∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7	2.1
BTP-C	G anchor			•			•	•
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6	-
δ_{V0}	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1	
δv∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7	
BTP-X	(anchor							
V	Service shear load:	[kN]	4.9	6.8	8.5	15.1	24.6	
δ _{V0}	Short term displacement:	[mm]	1.0	1.5	1.8	1.9	3.1	
δv∞	Long term displacement:	[mm]	1.5	2.3	2.7	2.9	4.7	
BTP-A	A4 anchor							
V	Service shear load:	[kN]	6.8	10.8	15.7	31.4	46.9	
δ_{V0}	Short term displacement:	[mm]	1.9	1.6	1.6	2.2	2.2	
δv∞	Long term displacement:	[mm]	2.4	2.4	2.4	3.3	3.3	

BTP anchors	
Performances	

Annex C6

Displacements under static or quasi-static tension and shear loads

Table C9: Essential characteristics for seismic performance category C1 BTP, BTP-G, BTP-X anchors

Essentia	I characteristics for seismic				Perfor	mances		
	ince category C1		M8	M10	M12	M16	M20	M24
Steel ten	sion failure							
N _{Rk,s,C1}	Characteristic tension steel failure:	[kN]	18.1	31.4	40.4	72.7	116.6	
γMs,N	Partial safety factor:	[-]	1.5	1.5	1.5	1.5	1.5	
	ear failure							
BTP anch				1			1	r
V _{Rk,s,C1}	Characteristic shear steel failure:	[kN]		12.2	17.8	33.0		
BTP-G and	chor							
V _{Rk,s,C1}	Characteristic shear steel failure:	[kN]	6.6	12.5	18.9	35.4	54.8	
BTP-X and	chor						•	
V _{Rk,s,C1}	Characteristic shear steel failure:	[kN]	7.7	12.2	17.8	33.0	58.5	
α_{gap}	Factor for annular gap:	[-]			0.5			
γMs,V	Partial safety factor:	[-]	1.25	1.25	1.25	1.25	1.25	
Pull out f								
BTP anch				r	1		1	r
NRk,p,C1	Characteristic pull out failure:	[kN]		5.3	8.4	17.5		
BTP-G and	chor			1			1	1
NRk,p,C1	Characteristic pull out failure:	[kN]	6.0	9.0	16.0	25.0	30.0	
BTP-X and	chor							
NRk,p,C1	Characteristic pull out failure:	[kN]	5.9	8.9	16.0	25.0	30.0	
γins	Installation safety factor:	[-]	1.2	1.0	1.0	1.0	1.0	
Concrete	cone failure							
h _{ef}	Effective embedment depth:	[mm]	48	60	70	85	100	
S _{cr,N}	Spacing:	[mm]			3 x h _{ef}		•	
Ccr,N	Edge distance:	[mm]			1.5 x h _{ef}			
γins	Installation safety factor:	[-]	1.2	1.0	1.0	1.0	1.0	
	pryout failure							•
k ₈	Pryout factor:	[-]	1	2	2	2	2	
Concrete	edge failure			I.	1			
lf	Effective length of anchor:	[mm]	48	60	70	85	100	
dnom	Outside anchor diameter:	[-]	8	10	12	16	20	

BTP anchors

Performances

Annex C7

Essential characteristics for seismic performance category C1

Econtial	abaraatariatiaa far aajamia		Performances						
	characteristics for seismic ce category C2	-	M8	M10	M12	M16	M20	M24	
Steel tensi	ion and shear failure							_	
N _{Rk,s,C2}	Characteristic tension steel failure:	[kN]		31.4	40.4	72.7	116.6		
γMs,N	Partial safety factor:	[-]		1.5	1.5	1.5	1.5		
V _{Rk,s,C2}	Characteristic shear steel failure:	[kN]		12.2	17.8	33.0	58.5		
α_{gap}	Factor for annular gap	[-]		0.5	0.5	0.5	0.5		
γMs,V	Partial safety factor:	[-]		1.25	1.25	1.25	1.25		
Pull out fa									
BTP ancho		r		1	,		1		
N _{Rk,p,C2} BTP-G ancl	Characteristic pull out failure:	[kN]			5.2	8.9			
N _{Rk,p,C2}	Characteristic pull out failure:	[kN]			5.9	16.3	17.2		
BTP-X anch	-			L					
N _{Rk,p,C2}	Characteristic pull out failure:	[kN]		3.9	9.1		21.0		
	Installation safety factor:	[-]		1.0	1.0	1.0	1.0		
<u>γins</u> Concrete (cone failure	1-1 1		1.0	1.0	1.0	1.0		
h _{ef}	Effective embedment depth:	[mm]		60	70	85	100		
Scr,N	Spacing:	[mm]			3:	x h _{ef}			
Ccr,N	Edge distance:	[mm]			1.5	x h _{ef}			
γins	Installation safety factor:	[-]		1.0	1.0	1.0	1.0		
	bryout failure								
k ₈	Pryout factor:	[-]		2	2	2	2		
-	edge failure								
lf	Effective length of anchor:	[mm]		60	70	85	100		
d _{nom}	Outside anchor diameter:	[-]		10	12	16	20		
Displacem				10	12	10	20		
BTP ancho									
δ _{N,C2} (DLS)	Displacement Damage	[mm]			2.34	3.99			
δv c2 (DLS)	Limitation State: ^{1) 2)}	[mm]			5.53	5.96			
δ _{N,C2} (ULS)	Displacement Ultimate Limit	[mm]			9.54	10.17			
$\delta_{\text{V,C2}(\text{ULS})}$	State: ¹⁾	[mm]			9.08	10.66			
BTP-G and				1					
δ _{N,C2} (DLS)	Displacement Damage	[mm]			6.79	5.21	5.72		
δv c2 (DLS)	Limitation State: ^{1) 2)}	[mm]			5.53	5.96	6.37		
δN,C2 (ULS)	Displacement Ultimate Limit	[mm]			24.70	19.58	17,20		
$\delta_{V,C2}$ (ULS)	State: ¹⁾	[mm]			9.08	10.66	12.32		
BTP-X anch		[mm]		3.15	5.57	_	6.82		
$\delta_{N,C2}$ (DLS)	Displacement Damage Limitation State: ^{1) 2)}	[mm] [mm]		5.61	5.57		6.37		
$\delta_{V C2 (DLS)}$ $\delta_{N,C2 (ULS)}$	Displacement Ultimate Limit	[mm]		14.77	20.31		29.12		
δv,c2 (ULS)	State: ¹⁾	[mm]		8.68	9.08		12.32		

²⁾ A small displacement may be required in the design in the case of displacements sensitive fastening of "rigid" supports. The characteristics resistance associated with such small displacements may be determined by linear interpolation or proportional reduction.

BTP anchors

Performances

Essential characteristics for seismic performance category C2

Annex C8

Ecconti	al characteristics unde	r fire expec				Perform	ances		
Lasenti	ai characteristics unde	i ille expos	sule	M8	M10	M12	M16	M20	M24
Steel fa	ilure								
		R30	[kN]	0,4	0,9	1,7	3,1	4,9	7,1
N _{Rk,s,fi}	Characteristic tension	R60	[kN]	0,3	0,8	1,3	2,4	3,7	5,3
INKK,S,TI	resistance:	R90	[kN]	0,3	0,6	1,1	2,0	3,2	4,6
		R120	[kN]	0,2	0,5	0,8	1,6	2,5	3,5
		R30	[kN]	0,4	0,9	1,7	3,1	4,9	7,1
V	Characteristic shear	R60	[kN]	0,3	0,8	1,3	2,4	3,7	5,3
V _{Rk,s,fi}	resistance:	R90	[kN]	0,3	0,6	1,1	2,0	3,2	4,5
		R120	[kN]	0,2	0,5	0,8	1,6	2,5	3,5
		R30	[Nm]	0,4	1,1	2,6	6,7	13,0	22,5
N 40	Characteristic bending	R60	[Nm]	0,3	1,0	2,0	5,0	9,7	16,8
M ⁰ Rk,s,fi	resistance:	R90	[Nm]	0,3	0,7	1,7	4,3	8,4	14,6
		R120	[Nm]	0,2	0,6	1,3	3,3	6,5	11,2
Pull out	failure								
N Rk,p,fi	Characteristic resistance:	R30 R60 R90	[kN]	1,3/1,5 ³⁾	2,3	3,0/4,0 ³⁾	6,3	7,5	7,5
		R120	[kN]	1,0/1,2 ³⁾	1,8	2,4/3,23)	5,0	6,0	6,0
Concre	te cone failure ²⁾					•			
NRk,c,fi	Characteristic resistance:	R30 R60 R90	[kN]	2.9	5,0	7,4	12,0	18,0	31,4
		R120	[kN]	2,3	4,0	5,9	9,6	14,4	25,2
Scr.N,fi	Critical spacing:	R30 to R120	[mm]			4 x ł			
S _{min,fi}	Minimum spacing:	R30 to R120	[mm]	50	60	70	85/1281)	100/150 ¹⁾	125
Ccr.N,fi	Critical edge distance:	R30 to R120	[mm]			2 x ł			
Cmin,fi	Minimum edge distance:	R30 to R120	[mm]			tack comes fro anchor has to			
Concre	te pry out failure								
k ₈	Pryout factor:	R30 to R120	[-]	1	2	2	2	2	2

Table C11: Essential characteristics under fire exposure BTP, BTP-G, BTP-X anchors

¹⁾ Respective values for anchors BTP / BTP-G, BTP-X

²⁾ As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi}$ = 1,0 is recommended

BTP anchors	
Performances	Annex C9
Essential characteristics under fire exposure	

Table C12: Essential characteristics under fire exposure BTP-A4 anchor

Facenti	al abaraatariatiaa uudar f				F	Performance	es	
Essentia	al characteristics under f	ire exposure	3	M8	M10	M12	M16	M20
Steel fai	ilure							
		R30	[kN]	0,7	1,5	2,5	4,7	7,4
NI	Characteristic tension	R60	[kN]	0,6	1,2	2,1	3,9	6,1
NRk,s,fi	resistance:	R90	[kN]	0,4	0,9	1,7	3,1	4,9
		R120	[kN]	0,4	0,8	1,3	2,5	3,9
		R30	[kN]	0,7	1,5	2,5	4,7	7,4
\ <i>\</i>		R60	[kN]	0,6	1,2	2,1	3,9	6,1
V _{Rk,s,fi}	Characteristic shear resista	nce: R90	[kN]	0,4	0,9	1,7	3,1	4,9
		R120	[kN]	0,4	0,8	1,3	2,5	3,9
		R30	[Nm]	0,7	1,9	3,9	10,0	19,5
NA0	Characteristic bending	R60	[Nm]	0,6	1,5	3,3	8,3	16,2
M ⁰ Rk,s,fi	resistance:	R90	[Nm]	0,4	1,2	2,6	6,7	13,0
		R120	[Nm]	0,4	1,0	2,1	5,3	10,4
Pull out	failure							
NRk,p,fi	Characteristic resistance:	R30 R60 R90	[kN]	2,1	3,5	4,8	1)	1)
		R120	[kN]	1,7	2,8	3,8	1)	1)
Concret	e cone failure ²⁾							
Nrk,c,fi	Characteristic resistance:	R30 R60 R90	[kN]	2.7	4,8	7,1	11,5	17,2
		R120	[kN]	2,2	43,8	5,6	9,2	13,8
Scr.N,fi	Critical spacing:	R30 to R120	[mm]			4 x h _{ef}		
Smin,fi	Minimum spacing:	R30 to R120	[mm]	42	47	57	75	100
Ccr.N,fi	Critical edge distance:	R30 to R120	[mm]			2 x h _{ef}		
C _{min,fi}	Minimum edge distance:	R30 to R120	[mm]	$c_{min} = 2 x h_{ef}$; if fire attack comes from more than one side, the edge distance of the anchor has to be ≥ 300 mm and $\ge 2 x h_{ef}$				
Concret	e pry out failure							
k ₈	Pryout factor:	R30 to R120	[-]	1	2	2	2	2

¹⁾ Pull out failure is not decisive
 ²⁾ As a rule, splitting failure can be neglected since cracked concrete and reinforcement is assumed.

In absence of other national regulations the partial safety factor for resistance under fire exposure $\gamma_{m,fi}$ = 1,0 is recommended

BTP anchors	
Performances	Annex C10
Essential characteristics under fire exposure	